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Abstract—The anions generated from diphenylphosphine oxide or dialkyl phosphites add easily at the �,�-double-bond of
1,2-dihydrophosphinine oxides 1 to afford a single diastereomer of 3-substituted tetrahydrophosphinine oxides 2–4 existing in a
twist-boat conformation. © 2002 Elsevier Science Ltd. All rights reserved.

1,2-Dihydrophosphinine oxides are versatile intermedi-
ates in the synthesis of other P-heterocycles1,2 and they
can be obtained most simply by the ring enlargement of
2,5-dihydro-1H-phosphole oxides.3

To prepare tetrahydrophosphinine oxides with an exo-
cyclic P�O moiety, we wished to add a variety of
�P(O)H compounds to the electron-poor, 5,6-double-
bond of 1,2-dihydrophosphinine oxides via a Michael
type addition. To activate the diphenylphosphine oxide
and the dialkyl phosphites selected as the reagents, they
were first reacted with trimethylaluminium at 0°C in
chloroform.

Then, the �P(O)− anion so formed reacted easily with
the �,�-double-bond of the dihydrophosphinine oxide
14,5 added to the reaction mixture at 0°C to furnish the
corresponding product. The use of Ph2P(O)H led to
3-diphenylphosphinoxido-1,2,3,6-tetra-
hydrophosphinine oxide 2, while that of dimethyl- and
diethyl phosphite gave 3-phosphonato derivatives 3 and
4, respectively (Scheme 1).6

One advantage of the above procedure is that only one
of the possible diastereomers of products 2–4 was
formed.

Column chromatography afforded products 2a, 3a,b
and 4a,b in 40–72% yields, whose structures were iden-
tified and characterised by 31P, 13C and 1H NMR, as
well as HR-FAB mass spectroscopy. The 31P NMR
spectra of the 3-P(O)Z2-tetrahydrophosphinine oxides
2–4 revealed a doublet of doublets with a 3JPP of
13.8–20.1 Hz due to the presence of the two phospho-
rus atoms. In the 13C NMR spectra, the C-3 and C-5
skeletal carbon atoms were, in each case, split by both

Scheme 1.
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Table 1. Relative energies for the conformers of cis and trans diastereomers of tetrahydrophosphinine oxides 3b and 2a
calculated by the B3LYP/6-31+G*//B3LYP/3-21G* method

phosphorus atoms. The end of the conjugated double-
bonds was unreactive due to steric hindrance caused by
the skeletal methyl group.

Inspection of Dreiding models suggests that the prod-
ucts 2–4 can exist both in a half-chair and in a twist-
boat conformation. Quantum chemical calculations
have been carried out to evaluate which of the con-
formers of the cis and trans diastereoisomers is pre-
ferred.7,8 The relative energies obtained for eight
possible conformers of cis and trans diastereoisomers of
the tetrahydrophosphinine oxides 3b and 2a at the
B3LYP/6-31+G*//B3LYP/3-21G* level of theory are
listed in Table 1.

It can be seen that in the case of 3b, the twist-boat
containing the double-bonded oxygen atom of the P1�O
group in the equatorial position and the P(O)(OMe)2

moiety in the axial position is the preferred structure,
that is, a cis diastereomer (3b/twist-boat2, Table 1, Fig.
1). Hence, the equilibrium must be shifted toward this
conformer (3b/twist-boat2). Intramolecular interaction
between the double-bonded oxygen atom of the
(MeO)2P�O moiety and the corresponding hydrogen
atom of the PCH2 unit may stabilise the boat con-
former (3b/twist-boat2) under discussion. The half-chair
conformers (3b/half-chair1, half-chair2, half-chair3 and
half-chair4) together with the three remaining twist-boat
conformers (3b/twist-boat1, twist-boat3 and twist-boat4)
are unfavourable. Tetrahydrophosphinine oxide 4b was
assigned the cis structure by analogy.

A similar conformational situation was found for tetra-
hydrophosphinine oxide 2a. In this case, not the twist-
boat2, but the twist-boat4 conformer containing the
sterically demanding P1-phenyl substituent in the equa-
torial position and the double-bonded oxygen atom of
the P1�O group in the axial position was found to be
the most stable form (2a/twist-boat4, Table 1, Fig. 2)

Figure 1. Stereostructure of the stable twist-boat2 conformer
of tetrahydrophosphinine oxide 3b obtained at the B3LYP/6-
31+G*//3-21G* level of theory P1�C2: 1.825 A� , C2�C3: 1.561
A� , C3�C4: 1.523 A� , C4�C5: 1.340 A� , C5�C6: 1.527 A� , C6�P1:
1.822 A� , O�P1�C2: 118.3°, O�P1�C6: 115.4°, O�P�O: 114.7°,
C2�P1�C6: 103.6°, P1�C2�C3�P: −78.2°, P1�C2�C3�C4: 46.7°,
P1�C6�C5�CH3: −131.7°, P1�C6�C5�C4: 49.8°, C6�C5�C4�C3:
−5.1°, C6�P1�C2�C3: −6.5°.

that is, in this instance, the trans diastereomer. The
bulky Ph2P(O) moiety is in the axial position. The
stabilising interaction between the oxygen atom of the
Ph2P(O) moiety and a hydrogen atom of the PCH2 unit
seems to be again the decisive factor. Tetra-
hydrophosphinine oxides 3a and 4a were assigned the
trans structure again by analogy.

The diastereoselectivity of the Michael type addition is
connected with the preference for the twist-boat con-
former with the axial P(O)Y2 substituent providing the
possibility of intramolecular stabilisation. For com-
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Figure 2. Stereostructure of the stable twist-boat4 conformer
of tetrahydrophosphinine oxide 2a obtained at the B3LYP/
6-31+G*//3-21G* level of theory P1�C2: 1.849 A� , C2�C3:
1.575 A� , C3�C4: 1.523 A� , C4�C5: 1.340 A� , C5�C6: 1.527 A� ,
C6�P1: 1.829 A� , O�P1�C2: 114.2°, O�P1�C6: 116.2°,
O�P�C1�: 111.7°, C2�P1�C6: 100.8°, P1�C2�C3�P: −93.9°,
P1�C2�C3�C4: 32.1°, P1�C6�C5�CH3: −121.23°,
P1�C6�C5�C4: 55.5°, C6�C5�C4�C3: −1.7°, C6�P1�C2�C3:
13.6°.

involving half-chair conformers was found.10 It is
clear that the conformational equilibrium of the tetra-
hydrophosphinine oxides is highly sensitive to sub-
stituent effects.

The new heterocycles with the exocyclic P-function
are of interest as, from another point of view, they
are bisphosphine oxides 2a, phosphinoxido-phospho-
nates 3a and 4a and phosphinato-phosphonates 3b
and 4b and as such, are of potential biological activ-
ity.

On the other hand, bisphosphinoxide 2a is a precur-
sor of the corresponding bisphosphine. The double
deoxygenation was carried out by a standard proce-
dure,11 using 2 equiv. of trichlorosilane in the pres-
ence of a sixfold quantity of pyridine, in boiling
benzene to afford bisphosphine 5 (Scheme 2) the
structure of which was supported by 31P NMR chem-
ical shifts and FAB-MS. To protect the highly sensi-
tive bisphosphine 5, it was converted by reaction with
2 equiv. of borane to bisphosphine-borane 6 (Scheme
2).

Borane complex 6 was characterised by 31P and 11B
NMR, as well as FAB-MS. The phosphine-boranes
can be regarded as precursors of the corresponding
phosphines, as these latter species are regenerated by
reaction of the complexes with secondary amines.12

Bis(borane-complex) 6 did indeed give bisphosphine 5
by reaction with diethylamine.

Finally, phosphinoxido-tetrahydrophosphinine oxide
2a was reacted with phosphorus pentasulfide to pre-
pare disulfide 7 identified by 31P and 13C NMR, as
well as HRFAB-MS (Scheme 3).

In summary, a useful method for forming a series of
1,2,3,6-tetrahydrophosphinine oxides with an exocyclic
P-function 2–4 was developed. In addition, the simple
procedure together with the diastereoselectivity makes
the above synthesis a practical method.

pounds 3b and 2a, the distances between the oxygen
atom of the P(O)Y2 moiety and the hydrogen atom
of the PCH unit are 2.098 and 2.149 A� , respectively,
justifying a hydrogen-bonding interaction between the
oxygen atom and the proton involved. Although H-
bonding between a double-bonded oxygen atom and
a saturated C-H hydrogen atom is not unknown,
examples are rather rare.

It is noted that the Michael additions studied are not
reversible under the conditions applied. Hence, we
had to assume that the stability of the tetra-
hydrophosphinine oxides (2–4) controls the stereose-
lectivity according to the Hammond’s principle.9 This
means that the rate of the addition is related to the
stability of the products (2–4).

For other 1,2,3,6-tetrahydrophosphinine oxides lack-
ing a bulky substituent in position 3, an equilibrium Scheme 3.

Scheme 2.
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